

### UNEP-*lites.asia* Laboratory Training Workshop Beijing, China 22-24 April 2015











### Gonio-photometry

XIN Hongzheng





Content

- -Basic knowledge
- -Gonio-Photometer
- -Operation
- -Standards



- Introduction: Lighting, light
- Radiometry, Photometry
- Colorimetry
- Integrating-sphere photometry
- Gonio-photometry
- Mathimatics



### Part1: Basic knowledge: introduction

UNEP Collaborating Centre for Energy Efficient Lighting

#### Lighting,







### Part1: Basic knowledge: introduction





### Part1: Basic knowledge: introduction

UNEP Collaborating Centre for Energy Efficient Lighting

#### **Appratus** -luminaire



= » what do we get from the lamps and luminaires?
= » Having lamps, why we still need the luminaires?





## Part1: Basic knowledge: radiometry and photometry

UNEP Collaborating Centre for Energy Efficient Lighting







Radiation -Energy transferring.



unit: J



## Part1: Basic knowledge: radiometry and photometry

#### Radiant flux

$$\Phi_e = \frac{dQ_e}{dt}$$

unit: W or J/s

Also called radiation power.

Special appratus, so called radiation meter to measure. Based on this quantity, all the others are derived.



## Part1: Basic knowledge: radiometry and photometry

#### **Radiant intensity**

$$I_e = \frac{d \Phi_e}{d \Omega}$$

unit: W/sr

Character of ideal radiation source:

$$\Phi_e = I_e \Omega$$

 $\Phi_e = 4\pi I_e$ 



图 1-2 点锡射源的锡射强度



## Part1: Basic knowledge: radiometry and photometry

#### Radiance

$$L_e = \frac{dI_e}{dA\cos\theta} = \frac{d^2\Phi_e}{d\Omega dA\cos\theta}$$

unit: W /(sr·m<sup>2</sup>)





## Part1: Basic knowledge: radiometry and photometry

#### Irradiance:





## Part1: Basic knowledge: radiometry and photometry

The sensitive function for human eyes to radiation:  $V(\lambda)$ 



 $V(\lambda)$  function to radiation, ==>photometric quantity

$$\frac{X_{V}}{X_{e}} = \frac{K_{m} \int_{0}^{\infty} S_{t}(\lambda) V(\lambda) d\lambda}{\int_{0}^{\infty} S_{t}(\lambda) d\lambda}$$



Candela is : the luminous intensity in a given direction of a source that emits monochromatic radiation of 540\*10<sup>12</sup> hertz and that has a radiant intensity in that direction of (1/683) watt per steradian.

1 cd=1/683 W/sr (1 lm=1/683 W) at 555.00nm



## Part1: Basic knowledge: radiometry and photometry

#### Photometric :

$$\Phi_{v} = \Phi_{e} \cdot V(\lambda) \qquad \text{unit: Im}$$

$$I_{v} = I_{e} \cdot V(\lambda) = \frac{d\Phi_{v}}{d\Omega} \qquad \text{unit: cd}$$



## Part1: Basic knowledge: radiometry and photometry

#### **Comparison sheet**

| Radiometric quantity | symbal                | units            | units | symbal         | Photometric quantity |
|----------------------|-----------------------|------------------|-------|----------------|----------------------|
| Radiant energy       | Q <sub>e</sub>        | J                | lm∙s  | Q <sub>v</sub> | Luminous energy      |
| Radiant flux (power) | $\Phi_{e}$ , P $_{e}$ | W                | Im    | $\Phi_{v}$     | Luminous flux        |
| Irradiance           | E <sub>e</sub>        | W/m <sup>2</sup> | lm/m² | E <sub>v</sub> | Illuminance          |
| Radiance             | L <sub>e</sub>        | W/(m² sr)        | cd/m² | L <sub>v</sub> | Luminance            |
| Radiant intensity    | l <sub>e</sub>        | W/sr             | cd    | l <sub>v</sub> | luminous intensity   |
|                      |                       |                  |       |                |                      |



## Part1: Basic knowledge: radiometry and photometry

|            | Parameters        | Conception                                        |  |  |
|------------|-------------------|---------------------------------------------------|--|--|
| Photometry | Luminous flux     | Amount of the light emitted                       |  |  |
|            | Luminous efficacy | Efficiency for turning electricity to light       |  |  |
|            | Intensity         | Amount of light in the designated direction       |  |  |
|            | Illuminance       | Amount of light on surface that being illuminated |  |  |
|            | Luminance         | Brightness                                        |  |  |



#### Part1: Basic knowledge: summary

Photometry is based on radiometry.

Related transferring, such as reflectance or transmitting are all based on radiometry .



Spacial integrating

### Co-ordinates: C







## Spacial integrating

### **Co-ordinates: B**















| SYS     | Angle<br>in<br>plane | Tilt angle of<br>the plane |
|---------|----------------------|----------------------------|
| A-plane | α                    | А                          |
| B-plane | β                    | В                          |
| C-plane | γ                    | С                          |
| conical | С                    | γ                          |

| directi<br>on | Angle in<br>plane | Tilt angle of the plane |
|---------------|-------------------|-------------------------|
| known         | Un-known          |                         |
| Α ,α          | Β,β               | tanB=tanα/cosA          |
| Α, α          | C ,γ              | tanC=tanα/sinA          |
| Β, β          | Α,α               | tanA=tanβ/cosB          |
| Β,β           | С ,ү              | tanC=sinB/tanβ          |
| С ,γ          | Α, α              | tanA=cosC*tanγ          |
| C, γ          | Β,β               | tanB=sinC*tanγ          |
|               |                   |                         |



UNEP Collaborating Centre for Energy Efficient Lighting

#### Prototype of gonio-sys









UNEP Collaborating Centre for Energy Efficient Lighting

Basic assumption for measurement:

- -ideal point source
- -ideal illumiance
- -ideal intensity



## Part2: Gonio-photometer

- Types and theroy
- Key components
- Related parameters



# Part2: Gonio-photometer: types and theory

- prototype
  - LIGHT SOURCE UIGHT SOURCE DIRECTIONS OF MOTION PHOTOMETER HEAD PHOTOMETER HEAD



# Part2: Gonio-photometer: types and theory





# Part2: Gonio-photometer: types and theory







# Part2: Gonio-photometer: types and theory





# Part2: Gonio-photometer: types and theory





# Part2: Gonio-photometer: types and theory





# Part2: Gonio-photometer: types and theory





# Part2: Gonio-photometer: types and theory







# Part2: Gonio-photometer: types and theory




## Part2: Gonio-photometer: types and theory

UNEP Collaborating Centre for Energy Efficient Lighting





© 2015 GELC, NOT for distribution



## Part2: Gonio-photometer: types and theory

**UNEP Collaborating Centre for Energy Efficient Lighting** 







## Part2: Gonio-photometer: types and theory

- UNEP Collaborating Centre for Energy Efficient Lighting
  - detect device









UNEP Collaborating Centre for Energy Efficient Lighting

• photometer: lux-meter



| _ |        |
|---|--------|
|   | 余弦矫正器  |
|   | Ⅴ(入)匹配 |
|   | 光电池    |



UNEP Collaborating Centre for Energy Efficient Lighting







UNEP Collaborating Centre for Energy Efficient Lighting

### motion controller





• cloed-loop control, prefered

© 2015 GELC, NOT for distribution



UNEP Collaborating Centre for Energy Efficient Lighting

#### • power source





china.makepolo.com

© 2015 GELC, NOT for distribution



UNEP Collaborating Centre for Energy Efficient Lighting

### electric measurement appratus







## Part3: Operation

- Tracing
- Photometric centre of samples
- Sample orientation
- Step interval setting
- Preheating and tranferring
- Circuiting and powering
- Surrounding
- Test reporting



## Part3: Operation: tracing

• Absolute photometer (lux-meter) +distance



• for non-mirror systems

$$\Phi = \int_{A} E dA$$
  
$$\Phi = r^{2} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} E(\theta, \phi) \sin \theta d\theta d\phi$$

$$\Delta \Phi = r^2 2\pi (\cos \theta_1 - \cos \theta_2) E_\theta$$
$$\Delta \Phi = r^2 (\phi_2 - \phi_1) (\cos \theta_1 - \cos \theta_2) E_\theta$$



## Part3: Operation: tracing

intensity standard lamp+photometer (not absolute)





## Part3: Operation: tracing

- total luminous flux standard lamp+photometer (not absolute)
- BDT-standard lamp for flux
- BDP-standard lamp for general use
- working substitute



## Part3: Operation: tracing

- difference of the length of the tracing line
- GONIO-system could be used to create flux standard lamp



# Part3: Operation: photometric centre of the sample

#### • photometric centre of lamps







- A
- B
- C
- D

© 2015 GELC, NOT for distribution



## Part3: Operation: photometric centre of the sample

photome ٠ Luminaires with opaque sides, lamp compartment substantially white 0 ο o 0 Transparent sides or without side members Luminaire with opaque side, lamp compartment substantially black 

© 2015 GELC, NOT for distribution



# Part3: Operation: photometric centre of the sample

photometric centre of luminaires

Luminaires with diffusing/prismatic sides





Luminaires with transparent sides or without side members:

all at lamp photometric centre





Transparent material



#### Part3: Operation: orientation

- angle 1—type C,γ
- nadir
- how to confirm?
- horizental
- how?





#### Part3: Operation: orientation

UNEP Collaborating Centre for Energy Efficient Lighting

• angle 2-C





#### Part3: Operation: orientation

UNEP Collaborating Centre for Energy Efficient Lighting

• angle 2





#### Part3: Operation: step interval

UNEP Collaborating Centre for Energy Efficient Lighting

• angle1: narrow beamed





#### Part3: Operation: step interval

UNEP Collaborating Centre for Energy Efficient Lighting

• angle1: spread beamed







#### Part3: Operation: step interval

UNEP Collaborating Centre for Energy Efficient Lighting

• angle2





γ=0° C=270°



#### Part3: Operation: transferring

- types1-sensitive
- HID
- FL WITH COLD SPOT



Part3: Operation: transferring

- types2
- FILAMENT, partly
- LED



#### Part3: Operation: preheating

- types1- quickly
- FILAMENT



Part3: Operation: preheating

- types2
- FL
- HID
- LED



#### Part3: Operation: preheating

- stationary monitoring and determination
- INTERVAL AND PERIOD
- ACCEPT deviation
- FLICKER



#### Part3: Operation: circuiting

• type1



© 2015 GELC, NOT for distribution



#### Part3: Operation: circuiting

UNEP Collaborating Centre for Energy Efficient Lighting

•





#### Part3: Operation: circuiting

• four-terminal(4-pole) method





- temperature
- environment->sample and instrument
- sensitive sample : FL, LED



- relative humidity
- environment-> instrument



- air movement
- heat loss-> temperature->...



- stray light
- -source,not limited to other sources than the device under test
- -path, not limited to other paths than the main path for test



### Part4: Standards

- CIE-70, CIE-121, CIE S 025
- LM-10, LM-31, LM-35, LM-41, LM-46, LM-79-2008
- LM-63-2002, CIE 102-1993
- GB/T 9468-2008, GB/T 7002-2008



### Part4: Standards

- CIE-70, CIE-121
- BASE for all


## Part4: Standards

- LM-79-2008
- special for SSL
- not limited to gonio-sys
- color in different direction involved



## Part4: Standards

- CIE S 025
- detailed requirement, UNCERTAINTY INCLUDED
- SSL products
- not limited to gonio-system



### Part4: Standards

- LM-10, LM-31, LM-35, LM-41, LM-46, etc
- detailed for application.

•



### Part4: Standards

- LM-63-2002, CIE 102-1993
- VERY USEFUL
- all information
- lighting design- software reading
- "-1" for absolute data



Thanks

- Reference
- standards or publications:
- CIE-70, CIE-121, CIE-S 025
- LM-10, LM-31, LM-35, LM-41, LM-46, LM-79-2008
- LM-63-2002, CIE 102-1993
- GB/T 9468-2008, GB/T 7002-2008
- other material:
- example pictures from web

© 2015 GELC, NOT for distribution



# Thanks for your attention

© 2015 GELC, NOT for distribution