

5

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

At the end of this talk, you should understand...

The Law of Propagation of Uncertainties

- · Why the sensitivity coefficient is central to the law
- How to determine the sensitivity coefficients
- What 'adding in quadrature' really means

How many readings you should average

- · What the uncertainty associated with an average is
- · How you know you have enough readings
- · When you've taken too many readings

• What correlation is

- · What the uncertainties are for averaging partially correlated data
- · How to estimate covariance from numerical and experimental data
- · How to deal with not knowing what the correlation is

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

11

September 11, 2014 Vienna / AT

cie

Example

$$V_{\rm S} = V_{\rm light} - V_{\rm dark}$$

$$\frac{\partial V_{\rm S}}{\partial V_{\rm light}} = 1 \qquad \frac{\partial V_{\rm S}}{\partial V_{\rm dark}} = -1$$

Very simple case

September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

cie

september 11, 2014 Vienna / AT

When measurement equations don't work well:

- Because you can't write a relationship
- Because it's too difficult to differentiate
- Because it's a program not an equation

CIE D2 CIE Tutorial on Measurement Uncertain Photometry and Radiometry for Industry

Can be achieved by d $2\pi r_i^2 r_i^2$	ifferentiating $a = 2\pi r^2 r^2 cr^{-1}$
$g_{\ell-d} = \frac{1}{\left(r_1^2 + r_2^2 + x^2\right) + \sqrt{\left(r_1^2 + r_2^2 + x^2\right)^2 - 4r_2^2}}$	$g = 2\pi r_1 r_2 \alpha$
$\beta = \sqrt{\left(r_1^2 + r_2^2 + d^2\right)^2 - 4r_1^2 r_2^2}$ $\alpha = \left(r_1^2 + r_2^2 + d^2\right) + \beta$	
$\frac{\partial g}{\partial r_1} = \frac{4\pi r_1 r_2^2}{\alpha} \left[1 - \frac{r_1^2}{\alpha} \left(\frac{\alpha - 2r_2^2}{\beta} \right) \right]$	
$\frac{\partial g}{\partial r_2} = \frac{4\pi r_1^2 r_2}{\alpha} \left[1 - \frac{r_2^2}{\alpha} \left(\frac{\alpha - 2r_1^2}{\beta} \right) \right]$	
$\frac{\partial g}{\partial d} = \frac{-4\pi r_1^2 r_2^2 d}{\alpha \beta}$ September 11, 2014 Venna / AT Venn	tties in 17

	A	B	C	D	E	F	G
4		-	-	Uncertainty in	diameter	or distance	-
5	This first section calculates of	for the straight	tforward case	microns	metres		3.1E-1
6	radius of first aperture / m	0.0025	6	1	1E.06	3	57.986
2	radius of second aperture / m	0.0015	3	1	1E-06	5	
8	distance between apertures / m	0.3	300	40	0.00004	1	
0							
10	sum of squares	0.0900085			Uncertai	inty associated with g	
11	4 (112) (212)	5.625E-11			due to fin	st anorture	0.0400
12	square root	0.0900085	heta		due to se	cond aperture	0.0667
13	bottom ine	0 180017	alpha		due to de	stance	.0.0267
14	a	4.908E-10	04-10		Combin	ed uncertainty associated with	¢ 0.082
10	-						-
16	This section recalculates g, c	hanging one pa	rameter at a Changing	time			
16	This section recalculates g, c	hanging one pa Changing first aperture	Changing second aperture	time Changing distance			
16	This section recalculates g, c	Changing one pa Changing first aperture 0.0025005	changing second aperture	Changing distance			
16 17 18	This section recalculates g, c radius of first aperture / m radius of second aperture / m	hanging one pa Changing first aperture 0.0025005 0.0015	Changing second aperture 0.0015005	time Changing distance 0.0025 0.0015			
16 17 18 19 20	This section recalculates g, c radius of first apenture / m radius of second apenture / m distance between apentures / m	hanging one pa Changing first aperture 0.0025005 0.0015 0.3	Changing second aperture 0.0015005 0.0	time Changing distance 0.0015 0.30004			
16 17 18 19 20 21	This section recalculates g, c radius of first apenture / m radius of second apenture / m distance between apentures / m	hanging one pa Changing first aperture 0.0025005 0.0015 0.3	arameter at a Changing second aperture 0.0015005 0.3	time Changing distance 0.0015 0.30004			
16 17 18 19 20 21 22	This section recalculates g, c radius of first aperture / m radius of second aperture / m distance between apertures / m sum of squares	hanging one pa Changing first aperture 0.0025005 0.015 0.3 0.090008503	arameter at a Changing second aperture 0.0015005 0.3 0.00100502	time Changing distance 0.0015 0.10004 0.090032502			
16 17 18 19 20 21 22 23	This section recalculates g, c radius of first aperture / m radius of second aperture / m distance between apertures / m sum of squares 4.112 (22	hanging one pa Changing first aperture 0.0025005 0.0015 0.3 0.050008503 5.027286-11	Changing second aperture 0.0015005 0.3 0.090008502 5.628756-11	time Changing distance 0.0025 0.30004 0.900032502 5.4248-11			
16 17 18 19 20 21 22 23 24	This section recalculates g, c radius of first apenture / m radius of second apenture / m distance between apentures / m sum of squares 4.112.2722 square root	hanging one pa Changing first aperture 0.0025005 0.0015 0.3 0.0000502 5.027286-11 0.95000552	Changing second aperture 0.0015005 0.3 0.090003502 5.828756-11 0.090003501	time Changing distance 0.0025 0.30004 0.90012502 5.6256-11 0.990012502			
16 17 18 19 20 21 22 23 24 25	This section recalculates g, c radius of first aperture / m distance between apertures / m sum of squares 4.112 (22 square root bottom line	hanging one pa Changing first aperture 0.0025005 0.015 0.3 0.050008503 5.62728E-11 0.050008502 0.10017005	arameter at a Changing second aperture 0.0015005 0.3 0.090008502 5.628756-11 0.090008501 0.090008502	time Changing distance 0.0025 0.30004 0.090032502 6.0268-11 0.990032501 0.19005500			
16 17 18 19 20 21 22 23 24 25 26	This section recalculates g, c radius of first apenture / m distance between apenture / m distance between apentures / m sum of squares 4 r192 (292 square root bottom line 9	hanging one pa Changing first aperture 0.0025005 0.0015 0.3 0.090008503 5.627256-11 0.990008502 0.180017005 4.9105-10	Changing second aperture 0.0025 0.0015005 0.3 0.000003502 5.828758-11 0.90003501 0.190003501 0.190003501	time Changing distance 0.0025 0.00004 0.090012502 5.6256-11 0.090022501 0.100002501 0.100002501 0.100002501			
16 17 18 19 20 21 22 23 24 25 26 27	This section recalculates g, c radius of first apenture / m radius of second apenture / m distance between apentures / m sum of squares 4 /112 (22 square not bottom line 2	hanging one pa Changing first aperture 0.0025005 0.0015 0.3 0.000000503 5.627256-11 0.950000502 0.10017005 4.910E-10 0.040075	arameter at a Changing second aperture 0.0015005 0.3 0.090003502 0.90003501 0.90003501 0.90003501 0.9007503 4.912E-10 0.066756	time Changing distance 0.0015 0.30004 0.90002502 5.6286-11 0.90002500 4.907E-10 0.0267%			
16 17 18 19 20 21 22 23 24 25 26 27 28	This section recalculates g, c radius of first aperture / m radius of second aperture / m datance between apertures / m sam of sparse between apertures / m sam of sparse 4.112 (2/2) source foot bettom line g	hanging one pa Changing first aperture 0.0025005 0.0015 0.3 0.050008503 5.027248-11 0.050008502 0.10017005 4.9108-10 0.04000%	Changing second aperture 0.0005 0.0015005 0.0015005 0.000003502 5.828758-11 0.090003501 0.190003501 0.190003501 0.190003501 0.090003501 0.090003501 0.090003501 0.090003501	time Changing distance 0.0025 0.0015 0.30004 0.090012502 5.6286-11 0.990032501 0.19005500 4.897E-10 -0.0267%			

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

22

maximum in same

23

- that are added when combining effects.

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

Uncertainty expression

Relative uncertainty: 5 mW m⁻² nm⁻¹ \pm 0.2 % i.e. uncertainty expressed as a percentage

Absolute uncertainty: $5 \text{ mW m}^{-2} \text{ nm}^{-1} \pm 0.01 \text{ mW m}^{-2} \text{ nm}^{-1}$ i.e. uncertainty expressed in the native measurement units

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

dealt with absolutely: Y, A and B all have the same units.

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

27

September 11, 2014 Vienna / AT

cie

28

Adding in quadrature for relative

- Most radiometric equations!
- Anything where uncertainties are in %

eptember 11, 2014 enna / AT

cie

35

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

At the end of this talk, you should

Applying the Law of Propagation of Uncertainties to an average

Averaging three readings

$$E_{\rm M} = \frac{E_1 + E_2 + E_3}{3} \qquad \qquad \frac{\partial E_{\rm M}}{\partial E_1} = \frac{\partial E_{\rm M}}{\partial E_2} = \frac{\partial E_{\rm M}}{\partial E_3} = \frac{1}{3}$$

$$u^2 (E_{\rm M}) = \left(\frac{1}{3}\right)^2 u^2 (E_1) + \left(\frac{1}{3}\right)^2 u^2 (E_2) + \left(\frac{1}{3}\right)^2 u^2 (E_3)$$
Assumption: $u(E_1) = u(E_2) = u(E_3) = u(E_i)$

$$u^2 (E_{\rm M}) = 3 \left(\frac{1}{3}\right)^2 u^2 (E_i)$$

$$u^2 (E_{\rm M}) = \left(\frac{u(E_i)}{\sqrt{3}}\right)^2$$

$$u(E_{\rm M}) = \left(\frac{u(E_i)}{\sqrt{3}}\right)^2$$
GE D2 GE Notation Measurement Uncertainties in Measurement Uncertainties in

We made the assumption: $u(E_1) = u(E_2) = u(E_3) = u(E_i)$ Uncertainty We need to know the Standard -5 -4 -3 -2 -1 0 1 2 Deviation The uncertainty in each measurement is a draw from a probability distribution September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry 36

What is the uncertainty associated

with each reading?

When there are few readings...

Increase the Estimate

- We need to increase in standard uncertainty when there are fewer measurements
- The revised GUM will have the following:

$$u_{\text{light,mean}}^2 = \frac{N-1}{N-3} \left(\frac{s_{\text{light}}}{\sqrt{N}}\right)^2$$

- If N = 5, the standard deviation is multiplied by ~1.41
- If N = 25, the standard deviation is multiplied by \sim 1.04

September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

cie

September 11, 2014 Vienna / AT

- Use more readings...
- But only when it is worth it...
- It is important to know when to stop!

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

39

41

Influence of drift...

How can we tell the influence of drift???

September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

The Allan Variance

- The pairs of data are then averaged, so now you have half as many data points with a time interval of 2∆t and the Allan Variance is calculated again.
- This is repeated, each time averaging the pairs that were used before.
- Plot the Allan Variance vs Time on a log-log scale graph.
 For white noise, the Allan deviation lies on a straight line on this log-log plot, with a slope of -0.5.

September 11, 2014	CIE D2 CIE Tutorial on Measurement Uncertainties in	13
Vienna / AT	Photometry and Radiometry for Industry	43

The uncertainties don't keep dropping forever

At the end of this talk, you should cie understand... The Law of Propagation of Uncertainties Why the sensitivity coefficient is central to the law · How to determine the sensitivity coefficients • What 'adding in quadrature' really means How many readings you should average · What the uncertainty associated with an average is How you know you have enough readings • When you've taken too many readings What correlation is · What the uncertainties are for averaging partially correlated data · How to estimate covariance from numerical and experimental data · How to deal with not knowing what the correlation is September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry 46

Correlation: Type A and Type B methods

CIE D2 CIE Tutorial on Measurement Uncertain Photometry and Radiometry for Industry

Type A: From the data

september 11, 2014 Vienna / AT Type B: From knowledge

This is where the correlation comes from! Systematic Effects!

Systematic and random effects: Lamp measured multiple times

September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

53

We can

Where

Sensitiv And U_x

Say this • Diag

Covariance Matrix

with the law of gation of uncertainty: $u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 dx_i^2$	$u^{2}(x_{i})+2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{\partial f}{\partial x_{i}}\frac{\partial f}{\partial x_{j}}u(x_{i},x_{j})$
write this in matrix form as: $u^2(y)$	$=C_{y}U_{x}C_{y}^{\top}$
the C _y are column vectors of $C_y = \left(\frac{\partial f}{\partial x}\right)^2$	$\frac{f}{1} \frac{\partial f}{\partial x_2} \cdots \frac{\partial f}{\partial x_n} \right)$
is the covariance matrix, which takes the form $1 2 \cdots n$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Covariance matrix with absolute variance (squared uncertainty) and covariance
covariance matrix relates to the measurement onals represent the variance associated with s	It of a spectrum: spectral irradiance value at λ_i .

September 11, 2014 Vienna / AT	CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry	54
-----------------------------------	---	----

Covariance Matrix

If there are both multiplicative and additive effects, a model may look like:

$$E\left(\lambda_{i}\right) = E_{\mathrm{T}}\left(\lambda_{i}\right)\left(1+S\right)\left(1+R_{i}\right) + \tilde{s} + \tilde{r}_{i}$$

Where:

- S could be distance and alignment effects;
- R_i could be lamp or current stability;
- s
 could be a common dark reading subtracted from all wavelengths;

Then, for the ith row and jth column in the matrix:

$$\tilde{U}_{E,ij} = \begin{cases} E_i^2 \left[u^2(S) + u^2(R_i) \right] + u^2(\tilde{s}) + u^2(\tilde{r}_i) & (i = j) \\ E_i E_j u^2(S) + u^2(\tilde{s}) & (i \neq j). \end{cases}$$

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

Earlier, when we weren't considering correlation, the sign of the sensitivity coefficient was irrelevant.

But when we consider correlations, the sign of the sensitivity coefficient is important!

```
September 11, 2014
Vienna / AT
```

55

CIE D2 CIE Tutorial on Measurement Uncertain Photometry and Radiometry for Industry

Don't know what the covariance is?

Think of the worst-case scenario

```
Does correlation increase or decrease
the uncertainty?
```

Treat as "all random" and "all systematic"

Summary and conclusion

September 11, 2014 Vienna / AT CIE D2 CIE Tutorial on Measurement Uncertain Photometry and Radiometry for Industry

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry

59

cie

Thank you for your kind attention

Tony Bergen tonyb@photometricsolutions.com

And.... thanks Emma!

September 11, 2014 Vienna / AT

CIE D2 CIE Tutorial on Measurement Uncertainties in Photometry and Radiometry for Industry