

Efficient Lighting MVE capacity building

Steve Coyne

UNEP steve.coyne.affiliate@unep.org

Identifying Needs to Build MVE Capacity

Delivery of training and knowledge will require different activities

- Face to face
- Web-based
- Documentary

Need to identify knowledge gaps, specific country needs and determine most efficient delivery mechanism based on resources/time available.

Training, knowledge delivery

Program till June 2015

- MVE infrastructure assessment report
- Training curriculum and delivery plan (based on identified gaps)
- 4 Guidelines on Best Practice MVE
- 6 Webinars and training sessions
- 4 MVE policy awareness and capacity building presentations at lites.asia

(Focussed on ASEAN and SPC countries but resources available to all countries)

Compliance program requires

Registration Database

+ annual sales log

Mandatory for regulated products (Voluntary for other products?)

Operates as a filter. Not allow registration of non-compliant product

Option to report unregistered products

Penalties for non-registration

Public

portal

Customs / Border control

Identification of product

Confirm customs product code

Check registration database

Compliance lamp selection process

Point of sale purchasing/checking (multiple sites around country)

Lamp purchases for verification test

Checking of product labels

Panel of Independent labs for Verification tests

Photometric parameters

Electrical parameters / qualities

Lifetime

Colour qualities

Endurance features

Hazardous substances

Photo biological safety

Global Harmonisation of Product Quality Requires governments to agree on performance levels and test methods

International
Bureau of
Weights &
Measures (BIPM)

Laboratory
Accreditation
Schemes (APLAC)

International
Commission on
Illumination
(CIE)

International Electrotechnical Commission (IEC)

Key Issues for Recognition of Laboratories

Traceability of calibration

Accreditation of labs to perform test procedures

Traceability

 Calibrations trace back to <u>the</u> Standard International Unit

"The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10¹² hertz and that has a radiant intensity in that direction of 1/683 watt per steradian."

 Each level of calibration incorporates the uncertainty of measurement from the levels above

International Accreditation System

- International recognition of lighting testing and reports from laboratories within a country is achieved by having the national accreditation body accrediting these labs meet the requirements of a global, mutual recognition arrangement framework.
- The International Laboratory Accreditation Cooperation (ILAC)
- Asia Pacific Laboratory Accreditation Cooperation (APLAC) is a regional accreditation body (www.aplac.org). APLAC is recognized by the Asia Pacific Economic Cooperation (APEC) as one of five Specialist Regional Bodies (SRBs) that support the work of the APEC Sub-Committee on Standards and Conformance.AC) heads this arrangement framework (www.ilac.org).

en.lighten

International Accreditation System

International and Regional Accreditation Bodies Relationships. (Wadhwa V, Rai S, Thukral T, Chopra M. Laboratory quality management system: Road to accreditation and beyond. Indian J Med icrobiol 2012;30:131-40)

Ninth lites.asia meeting – Malaysia, 22-23 April 2014

Australian Government

Authenticity of Test Reports

- Confirm accreditation status
- If in doubt contact AB
- Check scope of lab

Authenticity of Test Reports

APPLICATION NOTE

LD-AP57 REV

Cree® XLamp® LED IES LM-80-2008 Testing Results

Revision: 3 (November 22, 2011)

INTRODUCTION

This document provides the results of Cree's IES LM-80-2008 ("LM-80") testing on XLamp LEDs. Cree is providing this data so that the public can verify the reliability of Cree LEDs as part of a complete LED lighting system.

Note that this document only provides the end results of the LM-80 tests. This is not a complete LM-80 report. Do not use this document to submit luminaires or lamps to an agency. Cree customers who need the full LM-80 reports should contact their Cree sales representative.

Cree's customers who wish to share LM-80 results with their customers have permission to link to this docu-

TABLE OF CONTENTS

NVLAP Accrediation for LM-80-2008 Testing2
XLamp MC-E White LEDs (Rev 1)3
XLamp ML-B White LEDs (Rev 0)4
XLamp ML-E White LEDs (Rev 0)5
XLamp MP-L EasyWhite LEDs (Rev 0)6
XLamp MT-G EasyWhite LEDs (Rev 0)7
XLamp MX-3 White LEDs (Rev 0)8
XLamp MX-6 White LEDs (Rev 2)9
XLamp XM-L EasyWhite LEDs (Rev 0)10
XLamp XM-L White LEDs (Rev 0)
XLamp XP-E White LEDs (Rev 3)12
XLamp XP-E High Efficiency White LEDs (Rev 2) 13
XLamp XP-G White LEDs (Rev 4)
XLamp XR-E White LEDs (Rev 1)

Uncertainty of Measurement and Compliance

Uncertainty of Measurement and Compliance

Truth in claim analysis

Costs of a establishing a lab

Excludes:

- Land & building
- Utility costs (electricity)
- Management staff
- Equipment upgrades
- Repair & maintenance
- External training of staff

Note: major test equipment items vary significantly between manufacturers.

Items	National lab
A: Initial Setup costs	
Far field goniophotometer	\$ 250,000.00
Near field goniophotometer	\$ 25,000.00
Illuminance meter	\$ 5,000.00
Integrating sphere (spectral)	\$ 30,000.00
Luminance meter & Tile	\$ 15,000.00
Power supplies	\$ 30,000.00
Environment chamber (temperature & humidity)	\$ 70,000.00
Salt chamber	\$ 60,000.00
2 staff for 6 months setup	\$??.00
External Calibrations	\$ 10,000.00
Accreditation registration	\$ 5,000.00
Initial Total	\$ 500,000.00 +
B: Annual Maintaining of Accreditation Costs	
Accreditation registration	\$ 5,000.00
External Calibrations	\$ 10,000.00
Internal calibrations etc: 2 staff @ 20% of time	\$??.00
Annual Total	\$ 15,000.00 +

Test Lab Capacity for MVE

- Making sure your test lab has the capacity
 - Maintaining a consistent compliance activity
- Use a panel of third party labs for testing
 Selection criteria to include
 - Recognised accreditation for test methods required
 - Capability to carry out the range of tests required with acceptable uncertainty of measurement
 - Capacity to conduct the work in timely manner
 - Price

Test Results
Analysed

Incorporate Photometric Laboratory measurement uncertainties

Compare to MEPS requirements

Compare test results to registered claimed performance

Failures informed Remedial action Retest option

Penalties imposed

Product deregistration

Public notification

Financial penalty

Further legal action

Report Back Industry Workshops

Group analysis of test results to registered claimed performance (anonymous data)

Group analysis of test results to MEPS requirements

(anonymous data)

Discussion

Thank you

