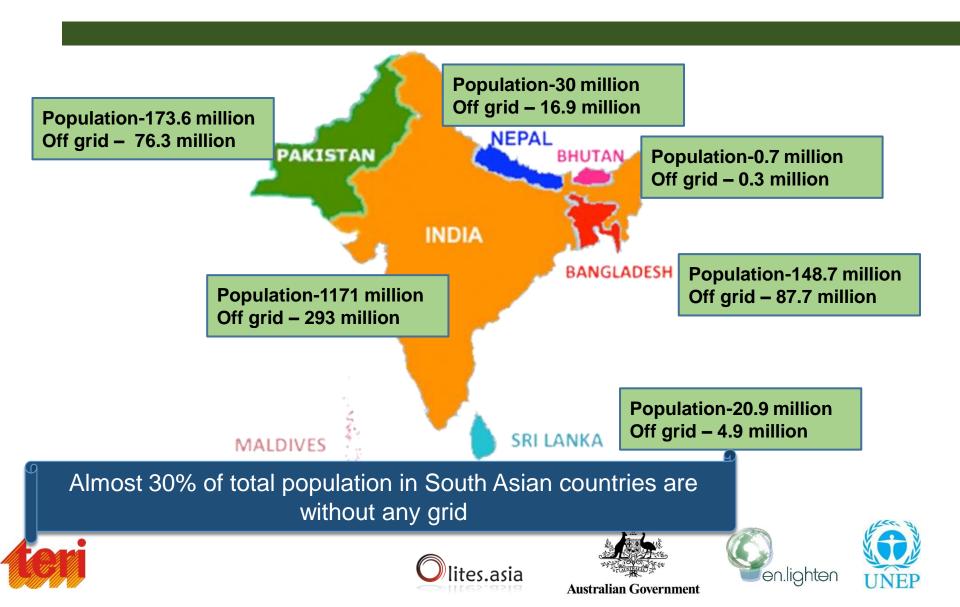


Off-grid lighting testing and certification processes

Pradeep Kumar

Centre for Research on Sustainable Building Science The Energy and Resources Institute (TERI) Indian Habitat Centre, New Delhi, India



Off grid population in South Asia

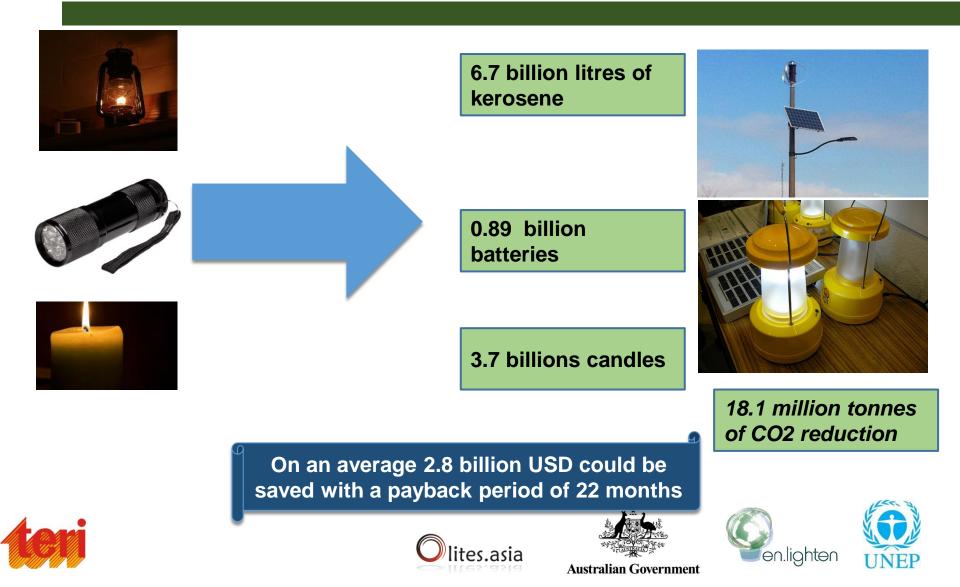
Common off grid sources of illumination in India

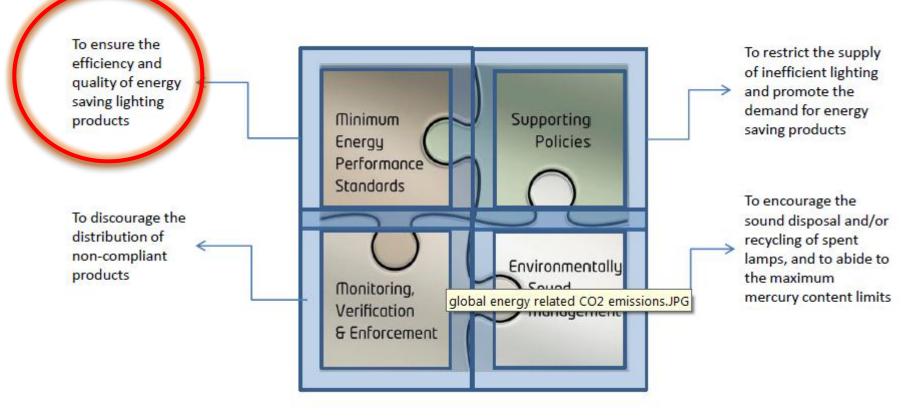
Kerosene lamp with glass 113.9 million

INDIA **District Map**

Kerosene lamp with wick 51 million

Candles 8.5 million On an average Indian government is spending 2 billion USD on subsidy in kerosene





Benefits of solar off grid lighting in India

UNEP En.lighten Initiative Integrated Policy approach (IPA)

Lighting a billion lives (LaBL)-A TERI Initiative

	LION LIVES We commit to enable a Billion Li access Light from Solar Technolo	ED PHOTOS & VIDEOS CONTACT
	MINE SUPPORTED PROJECT BRING	74 MILLION RURAL HOUSEHOLDS IN INDIA DO NOT HAVE ACCESS TO ELECTRICITY. CHILDREN STUDY IN HARMFUL SMOKE AND WOMEN STRUGGLE WITH HOUSEHOLD CHORES. BRING LIGHT TO THEM.
Impact Stories from the Grassroots	1 2 3 4 5 6 7 8	SUPPORT NOW SET INVOLVED
Chan and bright solar light improves the and livel hood. See how table is enlightening the lives of rural India.	See where LaBL has made an impact. Browse by states and suggest a village where you wish to	Case studies of Lighting a Billion Lives Programme in the OXEDE Energy Access Knowledges Detabase Read more Power to Engower: A case mody from Reigeth direct in Madyay Probab, India Ended more Example Exampl
Readmore	enlighten lives.	of Indians with sheer enterprise and imagination lifted many isolated rural communities out of energy powerty. Read more
our Journey in Pictures	Video Gallery Lighting a Billion Lives Bringing Solar L Studying is full of joy	Utility of solar applications for Common Service Centres (CSC) at the grassroots Read more View All »
		Appreciations & Recognitions I am very happy to know after spending an entire day at your village (Relatabled a village, Mahamhtra), that these sharings have made some and of an improvement in your lives." Relata Bose Stord Indian Chao Calebity, som

- LaBL a TERI initiatives, is a fee- for service model where solar charging stations are set up in villages and solar lanterns are provided to villagers on rental bases.
- The campaign was started in 2008, with illuminating more than 200 households in a small village in southern West Bengal.
- Presently about 200 villages are covered, helping about 10000 households

TERI LaBL Initiative.mp4

Phase 1- Year 2008-2010 (TERI Initiatives)

- Ministry of New and Renewable sources of Energy (MNRE) specifications were available for Solar lantern, Street lighting and Solar home system.
- MNRE specification were reviewed by TERI and was observed that mainly electrical specifications were mentioned. Information related to photometry were not mentioned.
- No test methods/procedures to check the quality and performance of off grid lighting system were available
- Literature survey for all the available international standards on testing methods for off grid lighting system was done by TERI. It was observed that existing specifications need revision and was discussed with MNRE

Phase 2-Year 2010-2012 (TERI and MNRE Initiatives)

- MNRE agreed to revise their existing specification.
- MNRE provided initial funding to TERI for setting up the laboratory at TERI premises.
- TERI in consultation with MNRE revised the specification by including information on photometry of lamps (LEDs and CFLs).
- TERI also developed test methods for testing solar Lanterns using several internationally available test methods

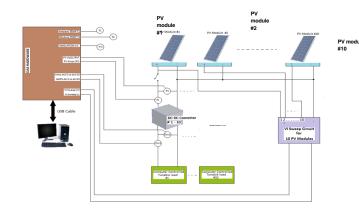
Phase 3- Year 2012-2014 (TERI, MNRE and IFC Initiatives)

- International Financial Corporation (IFC) Lighting Africa came to Asia.
- IFC interacted with TERI and MNRE and visited first MNRE lab and then TERI lab.
- IFC reviewed the testing procedures and methods developed by TERI.
- IFC provided technical support to TERI to modify the existing methods and develop the testing methods using the IEC 62257 9-5 standard.
- TERI with support from IFC expert reviewed the IEC 62257 9-5 standard and customized the standard(mainly sample size, weather parameters for SPV testing) as per Indian requirements.
- IFC provided support to TERI for expanding the existing infrastructure of laboratory.
- TERI lab is now testing the solar lighting system and certification is provided by IFC.

TERI Solar Lighting Laboratory

SPV test bed

To evaluate the electrical characteristics and performance of solar modules and arrays of various SPV technologies


To evaluate the performance of Solar Charging Stations with various configurations and combinations of components to develop the most appropriate design.

FEATURES

Up-to 10 SPV modules (each of up-to 150W) can be tested simultaneously

with voltage up-to 200V and current up-to 25A can be connected

Tunable voltage up to 20V and current up-to 2A at each port of the DC-DC converter cum Junction Box

Battery test bed

The purpose of the Battery Test bed is to test charging and discharging cycles of various types of batteries

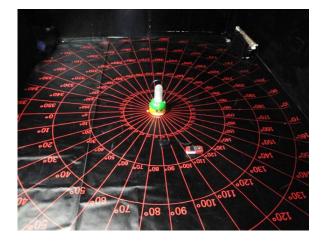
FEATURES

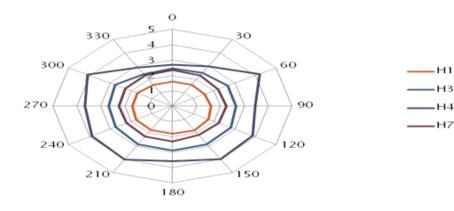
Test performed at different temperatures and humidity conditions

Testing capacity for Lead-acid, Li-ion/Lithium Polymer and NiMH

User defined charging and discharging cycles

Charging current upto 20 amperes



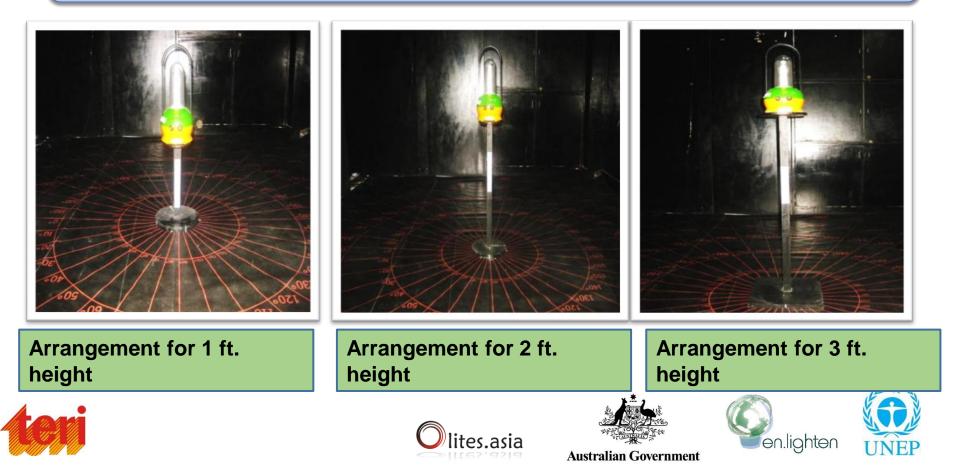


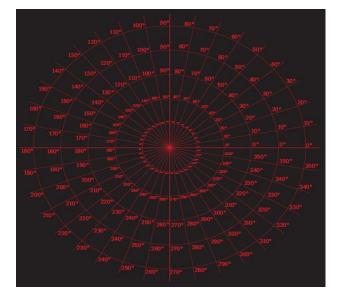
Light distribution test

Measure the light distribution characteristics of Solar Lighting Systems on a 360 degree horizontal plane

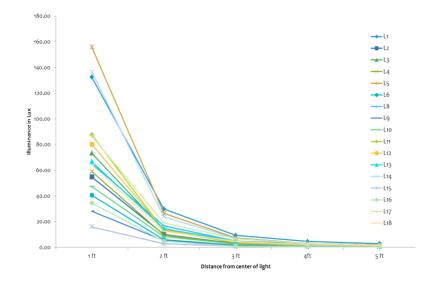
Test set up for light distribution test

Test set up for light distribution characteristics of SLS


with Concern


Light test at different height

Measure the Illuminance of Solar Lighting Systems at various height .

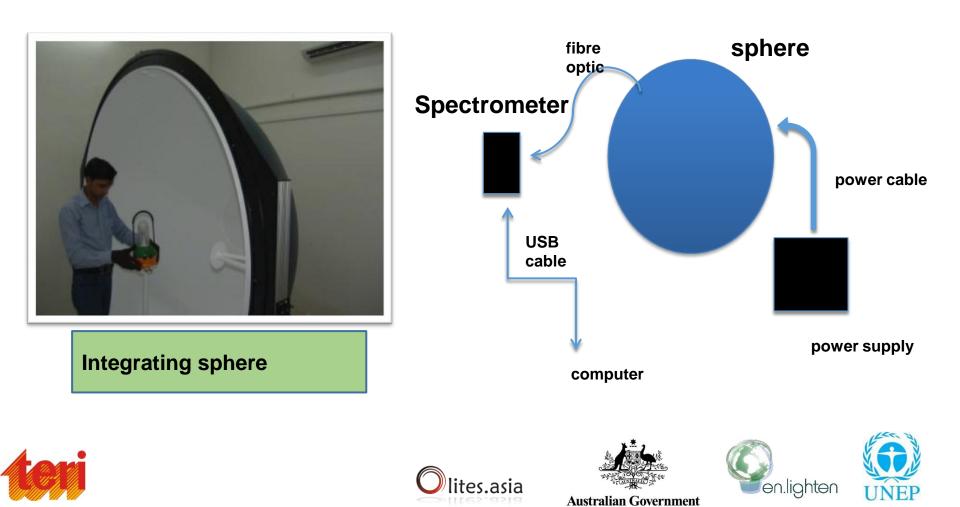


Light test at various distance

Measure the Illuminance of Solar Lighting Systems at various distances

Arrangement for Illuminance at various distance

Illuminance of lanterns with distance



Light Output Test

Long Term Lumen Degradation Facility

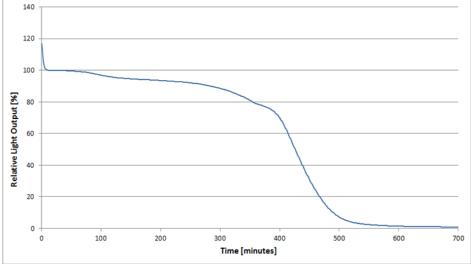
Estimate if the product's light output excessively degrades prematurely prior to the end of its usable lifetime

Typical reasons for failure

- Thermal management
- Electrical operation

The lumen maintenance test measures how much light output the product maintains as it runs continually for 2,000 hours

L70≥ light output after 2000hrs.



Full Battery Run Time Test

Determines the maximum useful duration of the product's service

Test and test standards at TERI SLL

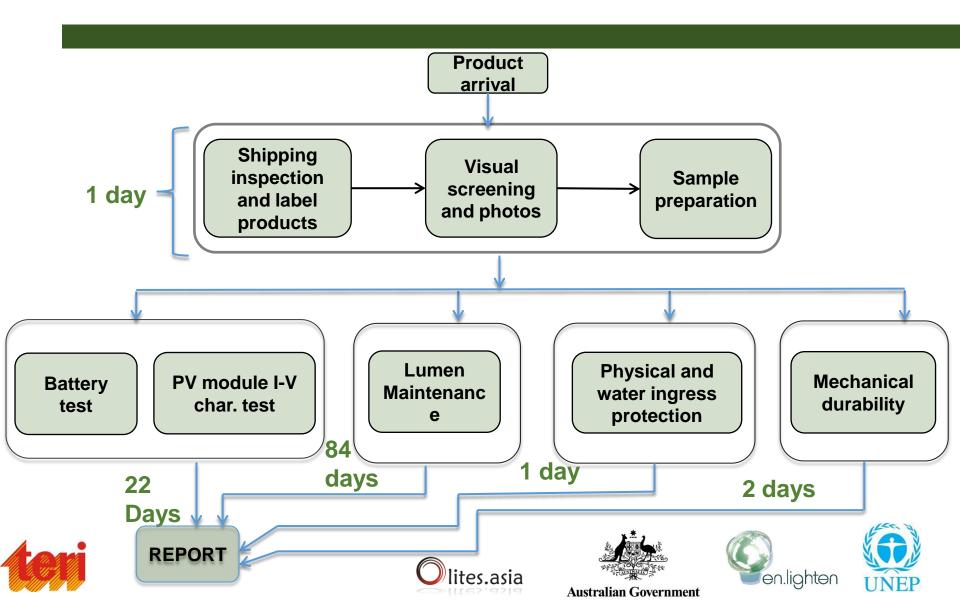
SI no	Specific tests or types of tests performed	Specification, standard (method) or technique used	Range of testing/ Limit of detection
1	(a) Battery capacity (b) Battery efficiency	IEC 62257-9-5 :2013 Annexure K, L & N	Battery Voltage: 1.2 - 36 V Battery Capacity: 500 mAh - 24 Ah
2	Full-battery Runtime Test	IEC 62257-9-5 :2013 Annexure M	Illuminance: up to 400,000 lux Battery Voltage: 1.2 - 15 V Battery Current: 10 mA - 2 A
3	Grid Charge Runtime Test	IEC 62257-9-5 :2013 Annexure O	Illuminance: up to 400,000 lux Battery Voltage: 1.2 - 15 V Battery Current: 10 mA - 2 A
4	Electro-mechanical Charge Test	IEC 62257-9-5 :2013 Annexure P	Battery Voltage: 1.2 - 15 V Battery Current: 10 mA - 2 A

Continued....

SI no	Specific tests or types of tests performed	Specification, standard (method) or technique used	Range of testing/ Limit of detection
5	 I-V Characteristics Test (a) Short circuit current at STC (b) Open circuit voltage at STC (c) Maximum power point power at STC (d) Maximum power point current at STC (e) Maximum power point voltage at STC (f) Short circuit current at TMOT (g) Open circuit voltage at TMOT (h) Maximum power point current at TMOT (i) Maximum power point current at TMOT (j) Maximum power point voltage at TMOT (k) STC I-V curve data set 	IEC 62257-9-5 :2013 Annexure Q IEC 60904-1 IEC 60891	SPV Module Voltage: 0.2 - 28 V SPV Module Current: 20 mA - 2 A
6	Solar Charge Test (a) Solar operation efficiency (b) Battery charging circuit efficiency (c) Solar runtime (d) Solar charging system characteristics	IEC 62257-9-5 :2013 Annexure R s.asia Australian Governm	Illuminance: up to 400,000 lux Battery Voltage: 1.2 - 15 V Battery Current: 10 mA - 2 A

Continued....

S I n o	Specific tests or types of tests performed	Specification, standard (method) technique used	Range of testing/ Limit of detection
7	Charge Controller Behavior Test (a) Active deep discharge protection test (b) Active overcharge protection test (c) Passive deep discharge protection test (d) Passive overcharge protection test (e) Standby loss measurement	IEC 62257-9-5 :2013 Annexure S	Battery Voltage: 1.2 - 15 V Battery Current: 10 mA - 2 A
8	Mechanical durability test (a) Drop test (b) Switch and connector test (c) Gooseneck test (d) Strain relief test	IEC 62257-9-5 :2013 Annexure W	SPV Module Voltage: 0.2 to 28 V SPV Module Current: 20 mA - 2 A Battery Voltage: 1.2 - 15 V Battery Current: 10 mA - 2 A



Continued....

SI no	Specific tests or types of tests performed	Specification, standard (method) technique used	Range of testing/ Limit of detection
9	Light Output Test (a) Luminous Flux measurement (b) Correlated colour temperature (CCT) measurement (c) Colour Rendering Index measurement	IEC 62257-9-5 :2013 Annexure I	Photometric range: 0.08 - 260,000 lm Red LED Range: 1.7 - 93,000 lm Green LED Range: 2.0 - 10,000 lm Blue LED Range: 0.70 - 32,000 lm Max Lamp Dimension: 21 x 21 cm2 Maximum Tubular Lamp Length: 1.3 m
10	Lumen Maintenance Test	IEC 62257-9-5 :2013 Annexure J	Illuminance: up to 400,000 lux System Voltage: 1 - 64 V System Current: 0.1 - 10 A
11	Light Distribution Test (a) Illuminance on a plane (b) Rotary disk (c) Illuminance on a desktop	IEC 62257-9-5 :2013 Annexure T Olites.asia Australian Go	Illuminance: up to 400,000 lux System Voltage: 1 - 64 V System Current: 0.1 - 10 A en.lighten

Testing time

Test results (IEC 62257 – Test Criteria)

Results Summary

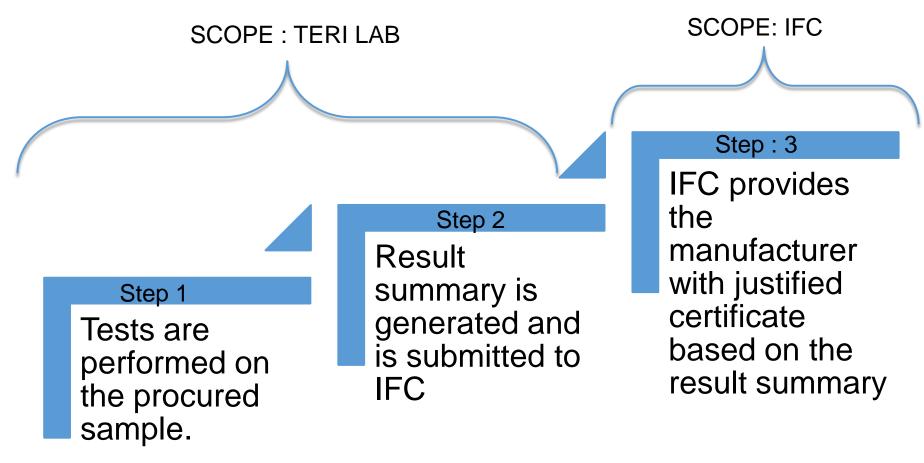
General Information

Manufacturer	20
Product Name	:
Model #	:
Report Date	: January 31, 2014
Test Start Date	: December 16, 2013
Test End Date	: January 31, 2014

Sample #	Sample ID Code	
1	SLL/SKP/161213/T/21	
2	SLL/SKP/161213/T/22	
3	SLL/SKP/161213/T/23	

Setting #	Setting Description
1	TURBO
2	NORMAL
3	BED-TIME

Parameter Tested	Setting	Rating	Measured Value	Average Percent Deviation	Comments	
Component Measurements						
Battery Capacity [mAh]		1450	1564	7.9		
PV Power [W]		2.5	2.6	5.1	Measurement made at SERC 3 W is reported in the product's Lighting Global Standardized Specifications Sheet; 2.5 W is specified on the product's packaging.	
Run Time						
Full-Battery Run Time	TURBO	6	7.3	21.7		
at L70 [h]	NORMAL	15	17.4	16.0		
Solar Run Time at L70 [h]	TURBO	6	7.3	21.7		
Lighting Service						
Luminous Flux [lm] (Average over L70)	TURBO	100	119	19,3	110 lm is reported in the product's Lighting Global Standardized Specifications Sheet; 100 lm is specified on the product's packaging.	
Correlated Color Temperature [K]	TURBO		3901			
Color Rendering Index	TURBO		70		**	
Useable working surface through L70 (2 25 lx) [m ²]	TURBO		1.2		Measured at 0.75 m distance from a surface	
Horizontal Full-Width Half-Max Angle [degrees]	TURBO	-	126			
Vertical Full-Width Half-Max Angle [degrees]	TURBO	-	125			
Useable working surface through L70 (≥ 25 lx) [m ²]	TURBO		1.2		Measured at the distance the lamp sits away from a surface when used as a desk lamp	
500 hour Lamen Degredation [% of initial]	TURBO		100		-	



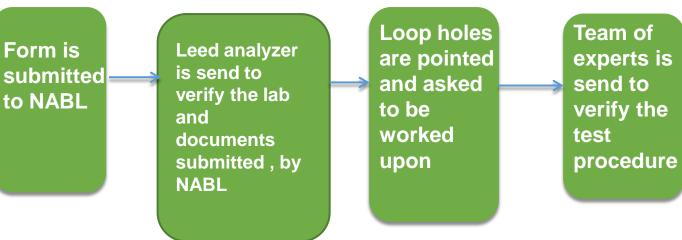
Certification

TERI lighting laboratory: Equipment cost

	USD
Cost of Instruments	130000
Spare cost	10000
Calibration cost	20000
Total	160000

List of affiliated labs under lighting global programme

- ISE fraunhofer Germany
- Schatz Energy Research Institute USA
- Lighting Research Centre USA
- Solar Lighting Lab Nairobi
- TERI's Solar Lighting Lab New Delhi India



NABL Accreditation (ISO/IEC 17025)

If, the process is found to be following the recommended codes and guidelines, NABL accreditation is provided

Thank you! pradeepk@teri.res.in

